561 research outputs found

    Background Subtraction Uncertainty from Submillimetre to Millimetre Wavelengths

    Full text link
    Photometric observations of galaxies at submillimetre to millimetre wavelengths (50 - 1000 GHz) are susceptible to spatial variations in both the background CMB temperature and CIB emission that can be comparable to the flux from the target galaxy. We quantify the residual uncertainty when background emission inside a circular aperture is estimated by the mean flux in a surrounding annular region, assumed to have no contribution from the source of interest. We present simple formulae to calculate this uncertainty as a function of wavelength and aperture size. Drawing on examples from the literature, we illustrate the use of our formalism in practice and highlight cases in which uncertainty in the background subtraction needs to be considered in the error analysis. We make the code used to calculate the uncertainties publicly available on the web.Comment: 7 pages, 5 figures, comments welcom

    Weak Lensing of Intensity Mapping: the Cosmic Infrared Background

    Full text link
    Gravitational lensing deflects the paths of cosmic infrared background (CIB) photons, leaving a measurable imprint on CIB maps. The resulting statistical anisotropy can be used to reconstruct the matter distribution out to the redshifts of CIB sources. To this end, we generalize the CMB lensing quadratic estimator to any weakly non-Gaussian source field, by deriving the optimal lensing weights. We point out the additional noise and bias caused by the non-Gaussianity and the `self-lensing' of the source field. We propose methods to reduce, subtract or model these non-Gaussianities. We show that CIB lensing should be detectable with Planck data, and detectable at high significance for future CMB experiments like CCAT-Prime. The CIB thus constitutes a new source image for lensing studies, providing constraints on the amplitude of structure at intermediate redshifts between galaxies and the CMB. CIB lensing measurements will also give valuable information on the star formation history in the universe, constraining CIB halo models beyond the CIB power spectrum. By laying out a detailed treatment of lens reconstruction from a weakly non-Gaussian source field, this work constitutes a stepping stone towards lens reconstruction from continuum or line intensity mapping data, such as the Lyman-alpha emission, absorption, and the 21cm radiation.Comment: Accepted in Physical Review

    Reconstructing Small Scale Lenses from the Cosmic Microwave Background Temperature Fluctuations

    Get PDF
    Cosmic Microwave Background (CMB) lensing is a powerful probe of the matter distribution in the Universe. The standard quadratic estimator, which is typically used to measure the lensing signal, is known to be suboptimal for low-noise polarization data from next-generation experiments. In this paper we explain why the quadratic estimator will also be suboptimal for measuring lensing on very small scales, even for measurements in temperature where this estimator typically performs well. Though maximum likelihood methods could be implemented to improve performance, we explore a much simpler solution, revisiting a previously proposed method to measure lensing which involves a direct inversion of the background gradient. An important application of this simple formalism is the measurement of cluster masses with CMB lensing. We find that directly applying a gradient inversion matched filter to simulated lensed images of the CMB can tighten constraints on cluster masses compared to the quadratic estimator. While the difference is not relevant for existing surveys, for future surveys it can translate to significant improvements in mass calibration for distant clusters, where galaxy lensing calibration is ineffective due to the lack of enough resolved background galaxies. Improvements can be as large as ∼50%\sim 50\% for a cluster at z=2z = 2 and a next-generation CMB experiment with 1μ\muK-arcmin noise, and over an order of magnitude for lower noise levels. For future surveys, this simple matched-filter or gradient inversion method approaches the performance of maximum likelihood methods, at a fraction of the computational cost.Comment: 11 pages, 7 figure

    Supersonic baryon-CDM velocities and CMB B-mode polarization

    Full text link
    It has recently been shown that supersonic relative velocities between dark matter and baryonic matter can have a significant effect on formation of the first structures in the universe. If this effect is still non-negligible during the epoch of hydrogen reionization, it generates large-scale anisotropy in the free electron density, which gives rise to a CMB B-mode. We compute the B-mode power spectrum and find a characteristic shape with acoustic peaks at l ~ 200, 400, ... The amplitude of this signal is a free parameter which is related to the dependence of the ionization fraction on the relative baryon-CDM velocity during the epoch of reionization. However, we find that the B-mode signal is undetectably small for currently favored reionization models in which hydrogen is reionized promptly at z ~ 10, although constraints on this signal by future experiments may help constrain models in which partial reionization occurs at higher redshift, e.g. by accretion onto primordial black holes.Comment: 5 pages, 3 figure

    Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements

    Full text link
    The improving sensitivity of measurements of the kinetic Sunyaev-Zel'dovich (SZ) effect opens a new window into the thermodynamic properties of the baryons in halos. We propose a methodology to constrain these thermodynamic properties by combining the kinetic SZ, which is an unbiased probe of the free electron density, and the thermal SZ, which probes their thermal pressure. We forecast that our method constrains the average thermodynamic processes that govern the energetics of galaxy evolution like energetic feedback across all redshift ranges where viable halos sample are available. Current Stage-3 cosmic microwave background (CMB) experiments like AdvACT and SPT-3G can measure the kSZ and tSZ to greater than 100σ\sigma if combined with a DESI-like spectroscopic survey. Such measurements translate into percent-level constraints on the baryonic density and pressure profiles and on the feedback and non-thermal pressure support parameters for a given ICM model. This in turn will provide critical thermodynamic tests for sub-grid models of feedback in cosmological simulations of galaxy formation. The high fidelity measurements promised by the next generation CMB experiment, CMB-S4, allow one to further sub-divide these constraints beyond redshift into other classifications, like stellar mass or galaxy type.Comment: 11 pages, 3 figures, Accepted to JCA

    Cluster Abundance in f(R) Gravity Models

    Get PDF
    As one of the most powerful probes of cosmological structure formation, the abundance of massive galaxy clusters is a sensitive probe of modifications to gravity on cosmological scales. In this paper, we present results from N-body simulations of a general class of f(R) models, which self-consistently solve the non-linear field equation for the enhanced forces. Within this class we vary the amplitude of the field, which controls the range of the enhanced gravitational forces, both at the present epoch and as a function of redshift. Most models in the literature can be mapped onto the parameter space of this class. Focusing on the abundance of massive dark matter halos, we compare the simulation results to a simple spherical collapse model. Current constraints lie in the large-field regime, where the chameleon mechanism is not important. In this regime, the spherical collapse model works equally well for a wide range of models and can serve as a model-independent tool for placing constraints on f(R) gravity from cluster abundance. Using these results, we show how constraints from the observed local abundance of X-ray clusters on a specific f(R) model can be mapped onto other members of this general class of models.Comment: 8 pages, 6 figure
    • …
    corecore